
Y. Xiang et al. (Eds.): IDCS 2012 and ICDKE 2012, LNCS 7646, pp. 302–315, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Directional Skyline Queries

Eman El-Dawy, Hoda M.O. Mokhtar, and Ali El-Bastawissy

Faculty of Computers and Information, Cairo University, Cairo, Egypt
{emiomar2000,hmokhtar)@gmail.com, alibasta@hotmail.com

Abstract. Continuous monitoring of queries over moving objects has become
an important topic as it supports a wide range of useful mobile applications. A
continuous skyline query involves both static and dynamic dimensions. In the
dynamic dimension, the data object not only has a distance from the query ob-
ject, but it also has a direction with respect to the query object motion. In this
paper, we propose a direction-oriented continuous skyline query algorithm to
compute the skyline objects with respect to the current position of the user. The
goal of the proposed algorithm is to help the user to retrieve the best objects that
satisfy his/her constraints and fall either in any direction around the query ob-
ject, or is aligned along the object’s direction of motion. We also create a pre-
computed skyline data set that facilitates skyline update, and enhances query
running time and performance. Finally, we present experimental results to dem-
onstrate the performance and efficiency of our proposed algorithms.

Keywords: Skyline queries, continuous query processing, moving object data-
bases, direction-based skyline queries.

1 Introduction

With the rapid advances in wireless communications and technologies for tracking the
positions of continuously moving objects, algorithms for efficiently answering queries
about large numbers of moving objects are increasingly needed [2, 6]. This meets the
requirements for location based services (LBS) [2, 14]. A moving object is simply
defined as an object whose location and/or geometry changes continuously over time
[13]. Consequently, a moving object database is a database that is designed to effi-
ciently handle the huge amount of location data, and also to efficiently manage, and
query location information. The main difference between moving object databases
and traditional databases is that traditional databases are best suited for static data
while moving object databases were designed for dynamic data (i.e. data continuously
changing over time). Furthermore, moving object databases are tailored for high fre-
quency of updates that is a common consequence of the rapidly changing location
information [13]. These new types of data (i.e. location data) generated new types of
queries that query the spatial and/or temporal properties of moving objects. Skyline
queries are an important class of queries that target applications involving multi-
criteria decision making. In general, a skyline query is defined as: Given a set of mul-
ti-dimensional data points, a skyline query retrieves a set of data points that are not

 Directional Skyline Queries 303

dominated by any other points in all dimensions. A skyline query finds a set of inter-
esting objects, satisfying a set of possibly conflicting conditions.

In our proposed algorithms we evaluate the skyline objects based on both distance
and direction with respect to the query point “QP”. The basic idea is as follows: for a
given query point QP, we propose two approaches, the first one is an all directional
continuous skyline query algorithm to find the interesting objects around the user in
all directions, the second one is a my direction continuous skyline query that finds the
interesting objects to the user that only fall along his motion direction.

Fig. 1. Motivation example

Example 1: Consider the example illustrated in Fig. 1. Suppose a person wants to
take lunch before going home, and he searches for the best restaurant in terms of
price, rank, and distance. In this example there are 2 static attributes (price, rank), and
a dynamic attribute (distance). And in his way he found that he forgot an important
thing in his office and decided to go back to his office.

Considering first the static skyline as shown in Fig. 2, the person wants to take his
lunch and he searches for the preference restaurants in terms of price and rank and he
found that restaurants R2, R4 and R6 are interesting and can be retrieved by a skyline
query. Thus, if we have a point “p” we can see if it dominates another point “q”, then,
“p” dominates “q” if it is better or as good as “q” on all considered directions.

Suppose now we also consider the dynamic attributes, in this example we have two
types of dynamic attributes: distance and motion direction of the query object. Con-
sider the example shown in Fig. 3, in this example we have 6 nearest neighbor objects
(R7,R8,R9,R10,R11,R12) around the query object “QP” located at (0, 0) and sorted
by the distance with respect to QP.

In this example we have vectors →
7R ,…, →

12R originating from QP.

We assume that two vectors are in the same direction if the included angle between
the two objects is smaller than a predefined threshold θthreshold. In this paper we fix the
value of θthreshold to be π/3. Consequently, the object R7 is in the same direction as R8
as the included angle between the two vectors R7 and R8 is equal to 26ο. In addition,
R7 is closer to QP than R8, thus R7 dominates the other objects in the same direction
(i.e. object R8) and will be one of the recommended objects to the user.

304 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

Similarly, we can say that R9 dominates R11, and R10 dominates R12, and thus
R7, R9, R10 are not dominated by other objects. Hence, the result of the dynamic
skyline part is {R7, R9, and R10} w.r.t. the query object QP, and it forms the result
for the candidate objects located all around the query object (i.e. in all directions).
However, when we consider only the objects that QP meets along its motion (as he
moves towards the East direction), we can find that the point R7 is the only candidate
for the dynamic skyline query (i.e. in one direction, the East). In the remaining of the
paper we show the details of our proposed direction-based skyline evaluation
algorithms.

Restaurant Price Rank

1 6 4

2 5 1

3 5 6

4 3 2

5 2 6

6 1 3

Fig. 2. Example of static skyline

Restaurant® D® Dir®

R7 22 27°

R8 5 53°

R9 54 158°

R10 6 270°

R11 67 117°

R12 72 236°

Fig. 3. Example of dynamic skyline

Generally, the crucial questions in skyline queries are: How to retrieve the best re-
sults to the user with respect to both the static attributes and the dynamic attributes in
all directions, and/or in his direction? Also, it is interesting to know how to update the
results of the query in the most efficient way. In summary, the contributions of this
work can be enumerated as follows:

1. We propose two algorithms: the all directional-based continuous skyline query
(All_Skyline), and the my direction continuous skyline query (My_Dir_Skyline)
algorithms which not only retrieve the objects satisfying the user requirement crite-
ria, but also consider the direction of motion of the user in order to return to the us-
er the objects that are both satisfying his requirements and are along his route.

 Directional Skyline Queries 305

2. We enhanced the computation of the directional skyline technique proposed in [5]
by using an additional filter based on the furthest point (FP) introduced in [4].

3. We efficiently update the query result by creating a pre-computed set of candidate
objects to facilitate updating the result and consequently enhancing query running
time and performance following a similar approach to the one proposed in [4].

4. We compare our work to the directional spatial skyline (DSS) algorithm presented
in [5]. To have a fair comparison we changed the DSS algorithm to query the static
attributes as well rather than considering the dynamic attributes only.

The rest of this paper is organized as follows: In section 2, we describe the related
work. In section 3, we propose our solutions for directional skyline queries. The expe-
rimental results are presented in section 4. Finally, section 5 concludes and proposes
directions for possible future work.

2 Related Work

For their importance, skyline queries were targeted in many works as an essential
query type for many applications. The authors in [1] propose two algorithms for the
skyline problem namely, a straightforward non-progressive Block-Nested-Loop
(BNL), and a Divide-and-Conquer (DC) algorithm. In the BNL approach they recur-
sively compares each data point with the current set of candidate skyline points,
which might be dominated later. The DC approach divides the search space and eva-
luates the skyline points from its sub-regions, respectively, followed by merge opera-
tions to evaluate the final skyline points. Both algorithms may incur several iterations,
and are inadequate for on-line processing. In [10], two progressive algorithms are
presented: the bitmap approach and the index method. Bitmap encodes dimensional
values of data points into bit strings to speed up the dominance comparisons. The
index method classifies a set of d-dimensional points into d-lists, which are sorted in
increasing order of the minimum coordinate. The index scans the lists synchronously
from the first entry to the last one. With the pruning strategies, the search space is
reduced. In [11], the authors develop BBS (branch-and-bound skyline), a progressive
algorithm also based on nearest neighbor search, which is I/O optimal. The authors in
[9] introduce the concept of Spatial Skyline Queries (SSQ). Where, given a set of data
points P and a set of query points Q, SSQ retrieves those points of P which are not
dominated by any other point in P considering their derived spatial attributes with
respect to query points in Q. The authors in [12] expand the skyline query concept
and propose continuous skyline query which involves not only static dimensions but
also the dynamic ones. In this paper the authors use spatio-temporal coherence to
refer to those spatial properties that do not change abruptly between continuous tem-
poral scenes. The positions and velocities of moving points do not change by leaps
between continuous temporal scenes, which enable them to maintain the changing
skyline incrementally. In [7], the authors propose the ESC algorithm, an Efficient
update approach for Skyline Computations, where objects with dynamic dimensions
move in an unrestricted manner, which creates a pre-computed second skyline set that
facilitates an efficient and incremental skyline update strategy and results in a quicker

306 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

response time. In [3], the authors present a framework for processing predictive sky-
line queries for moving objects. The authors present two schemes, namely RBBS
(BBS with Rescanning and Repacking) and TPBBS (time-parameterized R-tree with
Non- Spatial dimensions), to answer predictive skyline queries. In [5], the authors
propose a direction-based spatial skyline(DSS) queries to retrieve nearest objects
around the user from different directions and they don't take into account non-spatial
attributes. In [14] they extend the work in paper [5] by augmenting road networks.
Finally, in [4] the authors present a Multi-level Continuous Skyline Query algo-
rithm(MCSQ), which basically creates a pre-computed skyline data set that facilitates
skyline update, and enhances query running time and performance.

Inspired by the importance of skyline queries, in this work with follow the same
update approach presented in [4] and augment it with an additional selection criteria
that is based on the use of direction of motion of the query object as in [5].

3 Directional Skyline Query

3.1 Problem Definition

In Location Based Services (LBS) most queries are continuous queries. Unlike snap-
shot queries (instantaneous queries) that are evaluated only once, continuous queries
require continuous evaluation as the query results vary with the change of location
and/or time. In the same sense, continuous skyline query processing has to re-
compute the skyline when the query object and/or the databases objects change their
locations. However, updating the skyline of the previous moment is more efficient
than conducting a snapshot query at each moment.

In this paper we consider 2-dimensional data (both the data points which are static
data points, and the query point that is a moving point), and the direction of the dy-
namic points in skyline query w.r.t. the query point QP, as we need to get the nearest
objects around QP from different directions, as well as the objects in the direction of
QP. We focus on moving query points, where the query point changes its location
over time. We assume we are given a threshold angle θthreshold (that represents the ac-
cepted deviation angle between the query point and the data point) specified at query
time. We treat time as a third dimension for the moving point. In table 1, we summar-
ize the symbols used in this paper.

Table 1. Symbols and description

Symbol Description

ip
→

Vector between QP and pi

θthreshold Acceptable angle of deviation around QP

D(pi) Distance between QP and pi

FP Furthest point in the static skyline

 Directional Skyline Queries 307

Table 1. (continued)

Dirpi Direction of ip
→

:the angle between ip
→

 and(1,0)

λij(λpipj) Included angle between ip
→

 and jp
→

φij(φpipj) Partition angle between ip
→

 and jp
→

Sstatic Static part in the skyline query result

Sdynamic Dynamic part in the skyline query result

The included angle between ip


 and jp


 is denoted by λpipj (λij for short). λij

should be in the range 0≤ λij≤π, and is defined by the following equation as proposed
in [5]:

 ||.||

.
arccos

ji

ji
ji pp

pp



=λ (1)

We use Equation (1) to define objects alignment (in same direction) as follows.

Definition 1 (Same Direction). Given two data objects pi and pj, and a moving query
point QP. pi and pj are in the same direction w.r.t QP if 0≤ λij≤ θthreshold .

Thus, in Fig. 3, if θthreshold is given as π/3, object R8 is in the same direction as object
R7 w.r.t QP since the included angle λR7R8 between their vectors is less than θthreshold
(λR7R8= 27ο). On the other hand object R7 is on a different direction than object R9
w.r.t QP as λR7R9> θthreshold.

Since in this work we deal with moving query points, we consider the distance
function to be the traditional Euclidean distance for its simplicity and applicability to
our work. Thus the distance between any 2 points),(),,(222111 yxpyxp at time instant

it is given by:

2

21
2

2121))()(())()((),(iiii tytytxtxppD −+−= (2)

Definition 2 (Dominate). Given a query point QP, a threshold angle θthreshold, and two
data points 1 2,p p . If the distance),(),(21 pQpDpQpD ≤ and 21 , pp are in the

same direction w.r.t QP, this implies that 1p dominates .2p

In this paper we consider the evaluation of continuous skyline queries while moving,
and hence the queries involve distance, direction, along with other static dimensions.
Consequently, such queries are dynamic due to the change in the spatial variables. In
our solution, we only compute the initial skyline at the start time t0. Subsequently,
continuous query processing is conducted for each user by updating the skyline instead
of computing a new one from scratch each time. Without loss of generality, we restrict
our discussion to what follows the MIN skyline annotation, in which smaller values of
distance are preferred in our comparison to determine the dominance between two

308 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

points, and we assume that our data set points are static and the query object is the only
moving object.

3.2 Directional Multi-level Continuous Skyline Query (DCSQ)

In this section we discuss our proposed directional continuous skyline update algo-
rithms. Our algorithms distinguish the data points that are permanently in the skyline
and use them to derive a search bound as we compute the static skyline points (Sstatic).
To proceed in our algorithm we first need to distinguish the data point which is the
furthest point (FP) in the Sstatic points, we use the same approach presented in [4]. In
general, the FP point is the static data point in the skyline which has the maximum
distance to the query point; assume we have a point “P”, its predecessor is “P-”, and
it's successor is“P+”; so to enter the point P in a dynamic skyline (Sdynamic) it must
have an advantage over FP in their distance function value. We used λ as the included
angle between two points and θthreshold as an acceptable angle; if the angle between the
predecessor of the point P and the angle between the successors of P is greater than
θthreshold then P will be entered into the Sdynamic part of the skyline.

Fig. 12 shows how we can compute All_Skyline in all directions with respect to
QP, and Fig. 13 shows how we can compute My_Dir_Skyline only in the direction of
QP. This characteristic of the FP point and the acceptable angle θthreshold enables
us to use them as a filter for Sdynamic points before entering to the continuous skyline
query(i.e. before considering the full skyline = Sstatic+ Sdynamic).

Definition 3 (Directional Multi-level Continuous Skyline Query (DCSQ). A DCSQ
with M levels is a continuous skyline query that creates a pre-defined data set for the
dynamic part in the skyline such that the number of the pre-defined data sets depends
on the value of M, and then uses these data sets to update the pervious skyline set and
consequently updating the first skyline.

In brief, our algorithm proceeds as follows: Initially, we classify skyline into static
skyline (Sstatic), and dynamic skyline (Sdynamic). Then, we compute static skyline only
once at the beginning, and at every time instance we basically update the distance
function “D” and the direction “dirR” with respect to the new location of the query
point and the given deviation tolerance θthreshold. Next, after we compute the static
skyline (Sstatic) we create a view for the data set with the data except the pre-
considered static points in the skyline, so the dynamic skyline part will not rescan
static skyline points and consequently returns the new result in faster response time as
justified in [4]. Finally, the DCSQ computation depends on pre-computation of the set
of dynamic data points which will be used to update the previous result set and yields
faster response time.

In the remaining of this section we technically present our proposed algorithm in
more details. We basically propose two algorithms:

First: All_Skyline Algorithm

• First we compute the dominating points with respect to the non-spatial attributes.
Then, we use the resulting set (Sstatic) to compute the furthest point (FP).

• Using the FP as a filter for the data points, we compare the distance between QP
and each data point, if less than the distance to FP, then this data point might be in

 Directional Skyline Queries 309

the 1st level of the dynamic skyline denoted by “S1dynamic”. Thus, at any time if we
find that there exist a data point whose distance to the query object is greater than
the distance of the furthest point (i.e. D (FP) < D (p)), we can just terminate check-
ing the remaining points as we keep them sorted by distance.

• We keep checked points in a list denoted by “eval_obj”, then, we compute for each
point (p) in “eval_obj” the angle between it and its predecessor (p-) point and the
angle with its successor point (p+) as points are put in a circular list. If the angle be-
tween p- and p+ (denoted by the partition angle φ) is greater than the given accept-
able deviation angle θthreshold, then we add the point ‘p’ to S1dynamic.

• We save the difference between the points in eval_obj(is a list of visited points)
and its successor point in a list of angles Φ and if we find that all the angels in Φ
are less than 2θthreshold then we terminate checking the remaining point as in [5].

• Next, we merge S1dynamic along with Sstatic to obtain the result for the first skyline.
• To update the results of the skyline query we use the same approach in [4].

Fig. 12 shows how we can compute the All_Skyline algorithm.

Example 2: Continuing with Example 1, assume we want to compute the All_Skyline
algorithm. First, if we consider the non-spatial attributes to compute the dominating
points we get Sstatic={R2,R4,R6} as the preferred restaurant in the non-spatial dimen-
sions. Next, we compute the furthest point (FP) using the Sstatic set and we find that
R6 is the FP point.

Then, for the points in the 6-NN in Fig. 2. If the distance of any point to QP is
greater than the distance of the furthest point (i.e. D (FP) < D (p)), we can just termi-
nate checking the remaining points in the 6-NN as we already have them sorted by
distance as shown in Fig. 3 where the D (FP) =112.

Thus, as shown in Fig. 3 we can see that D(R7)<D(FP) so we save R7 in
“eval_obj”, and also in S1dynamic. Assume we checked R7,R8,R9,R10 as shown in
Fig. 3, the vectors of those objects partition the 2π angle into four partition angles
φR7R8 =26°, φR8R9=105°,φR9R10 =112°, and φR10R7=117°, and also the distance of the
checked objects are smaller than FP so we can terminate our process and S1dynamic

={R7,R9,R10}. Finally, we merge S1dynamic along with Sstatic to obtain the result for the
first skyline = {R7, R9, R10, R2, R4, R6} sorted by distance to QP.

Second: My_Dir_Skyline Algorithm

• As the previous algorithm we first compute Sstatic and the FP point.
• If a point ‘p’ is closer than FP and the angle between the QP and p is smaller than

θthreshold, then p is in the direction of the QP and is entered into S1dynamic.

• Next, we merge S1dynamic along with Sstatic to obtain the result for the first skyline.

• To update the results of the skyline query we use the same approach in [4].

Fig. 13 shows how we can compute the My_Dir_Skyline algorithm.
We also make some changes in the directional spatial skyline (DSS) to make them

consider both spatial and static attributes as we describe in Fig. 14.
Example 3: Assume we want to compute the My_Dir_Skyline for the example pre-

sented in Example 1 and 2. If the point p in our 6-NN example has a smaller distance

310 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

than FP and the angle between the QP and p is smaller than θthreshold, then p is in the
direction of the QP and entered to S1dynamic. As shown in Fig. 3 we can find that R7 is
the dynamic skyline point as it is in the direction of QP (East); so S1dynamic ={R7}.
Next, we merge S1dynamic along with Sstatic to obtain the result for the first skyline= {R7,
R2, R4, R6}.

4 Experimental Evaluations

In this section we present our experiments for evaluating the proposed algorithms. We
evaluated the performance by comparing it with the MCSQ algorithm [4] and DSS
algorithm [5]. For the accuracy, our proposed algorithm retrieves that same skyline
result as the result obtained by both algorithms proposed in [4, 5]. For our moving
query point we use the Brinkhoff generator for moving object trajectories [8]. As for
the data points, we use a real data set about residential building from Aswan town in
Egypt. We assumed that our data set points are static and the query object is a dynam-
ic object which changes its location with respect to time. Since our data set is reason-
able in size, we do not use index structure in our experiments and all the data points
are stored in memory. We used 1000 record and θthreshold=60° as a default value on
most of our experiments. We used SQL server 2005 and visual studio 2008 (C#) in
our experiment. Experiments are implemented on a 3GHz Pentium 4 PC with 1.0GB
memory, running Windows XP service pack 3.

In the first experiment we used two dimensional non-spatial attributes and we vary
the size of the data set (200, 400, 600, 800, and 1000) and observe the effect of in-
creasing the number of records on the CPU time and on update time. Fig. 4 shows the
effects of varying the number of records on both the All_Skyline and the
My_Dir_Skyline algorithms, and compares it to the MCSQ and DSS algorithms. We
can observe that the proposed algorithms enhance the CPU time, however the MCSQ
algorithm has a smaller response time as it does not need to compute the direction.
Fig. 5 shows that our algorithms and the MCSQ algorithm are better than the DSS
algorithm in terms of the time needed to update the results of skyline query result as
both approaches use a candidate set for updating the skyline results. So our algorithms
improve the update time, however, the CPU time is increased due to the use of the
additional directional filter that acts as an additional dimension in our computation.

Fig. 4. CPU time for different no. of records Fig. 5. Update time for different no. of records

 Directional Skyline Queries 311

In the second set of experiments we study the effect of varying the number of le-
vels (2, 3, 4, and 5) on the CPU time and update time. In the first experiment we
compare the All_Skyline and the My_Dir_Skyline algorithms with the MCSQ algo-
rithm. As shown in Fig. 6, My_Dir_Skyline algorithm requires less CPU time com-
pared to All_Skyline algorithm as it needs fewer computations to compute the points
in the same direction of the user. We also observe that MCSQ algorithm requires less
CPU time than All_Skyline algorithm. The reason behind this observation is that both
All_Skyline and the My_Dir_Skyline algorithms require more computations to com-
pute the direction of the objects. In Fig. 7 we show the update time of both the
All_Skyline and the My_Dir_Skyline algorithms and the MCSQ algorithm. As shown
as number of levels increases, the update time decrease as we need less time to update
our skyline query result using the previous candidate sets of the skyline.

 Fig. 6. CPU time for different no. of levels Fig. 7. Update time for different no. of levels

The third experiment examines the effect of varying the value of the angle θthreshold on
both the number of examined objects to get our skyline points, and on the output result
size (skyline points). In these experiments we vary the angle in the range [15, 85] and
study the effect on both CPU time and update time. Fig. 8 and Fig. 9 show that CPU and
update time decrease when the value of θthreshold increases. The reason behind this ob-
servation is that more objects can dominate larger angle ranges given a larger value of θ.

 Fig. 8. CPU time for different θthreshold Fig. 9. Update time for different θthreshold

In the fourth experiment we study the effect of varying the value of θthreshold which
varies in the range of [15, 85] on the number of checked nearest neighbor objects until
we get the skyline points and on the objects in the skyline result. Fig. 10 shows that

312 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

both the number of checked nearest neighbor objects and the objects in the skyline
query decreases by increasing the value of θthreshold as an object can dominate larger
angle ranges given a larger value of θthreshold.In the last experiment we examine the
effect of varying the value of θthreshold on the number of objects in the skyline. In fig.
11 we can see that when we increase the value of θthreshold the number of points in the
skyline query results decreases in the All_Skyline algorithm. The reason behind this
observation is that more objects can dominate larger angle ranges given a larger value
of θthreshold, however in the My_Dir_Skyline algorithm the number of points in the
skyline increases when the value of θthreshold increases because when the value of θ
increases the range of directions around the query object increases so the number of
candidates increases and consequently it has more points in the skyline results.

 Fig. 10. Effects of varying θthreshold on the Fig. 11. Effects of varying value of θthreshold on
 No. of output results All_Skyline & My_Dir_Skyline

Fig. 12. All_Skyline Procedure

 Directional Skyline Queries 313

Fig. 12. (continued)

Fig. 13. My_Dir_Skyline Procedure

15. }
16. ELSE terminate
17. Φ = (Φ − {φp−p+ }) {φp−p ,φpp+ }; // update angle
18. UNTIL FALSE or all the objects are processed
19. Get Sdynamic }
20. All_Skyline= Ssatatic+Sdynamic; //update All_Skyline.
21. Compute FP at time τQP[2] and Compute SMdynamic at

time τQP[2]
22. FOR (2≤ t ≤ |τQP[t]│) DO FOR (every point p in Sstat-

ic)
23. Update D (p, QP)
24. END FOR
25. Sdynamic= SMdynamic ; // update Sdynamic
26. All_Skyline= Ssatatic + Sdynamic
27. Compute FP at time τQP[t+1] and Compute SMdynamic

at time τQP[t+1]
28. END FOR
29. END

Algorithm2 My directional continuous skyline
(My_Dir_Skyline)
1. Input:
 Data set points),..,,(21 mpppp ,

 Query point: QP, θthreshold, Query point trajectory
time instances τQP[t]
2. Output: All_Skyline // continuous skyline query

result
3. Compute Sstatic at time τQP[1]
4. FP = Find FP // compute FP
5. Sdynamic=Ø ;
6. Init_NN_query(q) ; // initialize the NN query

7. IF(D(p)<D(FP)) THEN
8. Sdynamic ={p}; ELSE terminate // result set
9. REPEAT
10. p = get_next_ NN
11. IF(D(P)<D(FP) dirp < θthreshold) THEN
12. Sdynamic = Sdynamic {p}; // p in dynamic skyline

13. ELSE terminate
14. UNTIL all the objects are processed
15. get Sdynamic at time τ QP[1]
16. My_Dir_Skyline= Ssatatic + Sdynamic ; // update

My_Dir_Skyline

314 E.-D. Eman, H.M.O. Mokhtar, and E.-B. Ali

Fig. 13. (continued)

Fig. 14. DSS Procedure

17. Compute FP at time τQP[2] and Compute SMdynamic at
time τQP[2]

18. FOR (2≤t≤|τQP[t]│) DO
19. FOR(every point p in Sstatic)
20. Update D (p, QP)
21. END FOR
22. Sdynamic= SMdynamic; // update Sdynamic
23. All_Skyline= Ssatatic + Sdynamic
24. Compute FP at time τQP[t+1] and Compute SMdynam-

ic at time τQP[t+1]
25. END FOR
26. END

Algorithm 3 Directional continuous skyline (DSS) with
static attributes
1. Input: data set points),...,,(21 mpppp ,

 Query point: QP and acceptable angle θthreshold

 Query point trajectory time instances τQP[t]
2. Output: DSS // continuous skyline query result
3. Compute Sstatic at time τQP[1]
4. Sdynamic=Ø ;
5. Init_NN_query(q) ; // initilize the NN query
6. eval_obj=p ; // get the first NN object
7. S={p}; // result set
8. Φ={ φpp}; //initialize the partition angle set
9. REPEAT
10. p = get_next_ nn
11. p-,p+; // pred and succ of P
12. eval_obj=eval_objU{p}
13. IF(λpp- ≥ θthreshold λpp+ ≥ θthreshold) THEN
14. S=SU{p}; // p in dynamic skyline
15. Φ = (Φ − {φp−p+ }) U{φp−p, φpp+ };
// update the part_angle set
16. UNTIL FLASE or all the objects are processed
17. get Sdynamic; DSS= Sstatic + Sdynamic ;
18. FOR (2≤t≤│ τQP[t]│) DO
19. FOR(every point p in Sstatic)
20. UPDATE D (p, QP)
21. END FOR
22. Compute Sdynamic time τQP[t] // update Sdynamic
23. DSS= Ssatatic + DSdynamic
24. END FOR
25. END

 Directional Skyline Queries 315

5 Conclusions and Future Work

In this paper, we propose 2 algorithms which efficiently update Skyline query results
through limiting the search space when updating skyline results, and by considering
only the objects around the user from different directions and also the points in the
same direction as the user. Experimental studies are conducted using a real data. The
experiments show that the proposed methods are robust and efficient. For future work
we aim to increase our data set size and use an index structure to study the effect of an
index structure on the performance of our algorithm. We also plan to investigate the
performance of our proposed algorithms in the case of moving data objects.

References

1. Borzsony, S., et al.: The Skyline Operator. In: Proceedings of the 17th Intl. Conf. on Data
Engineering, pp. 421–430 (2001)

2. Benetis, R., et al.: Nearest and Reverse Nearest Neighbor Queries for Moving Objects. The
VLDB Journal 3(15), 229–249 (2006)

3. Chen, N., Shou, L., Chen, G., Gao, Y., Dong, J.: Predictive Skyline Queries for Moving
Objects. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS,
vol. 5463, pp. 278–282. Springer, Heidelberg (2009)

4. El-Dawy, E., Mokhtar, H.M.O., El-Bastawissy, A.: Multi-level Continuous Skyline Que-
ries (MCSQ). In: Zhang, J., Livraga, G. (eds.) Intl. Conf. on Data and Knowledge Engi-
neering (ICDKE), pp. 36–40. IEEE, Milan (2011)

5. Guo, X., Ishikawa, Y., Gao, Y.: Direction-based spatial skylines. In: Proceedings of the
Ninth ACM Intl. Workshop on Data Engineering for Wireless and Mobile Access, pp.
73–80. ACM, Indianapolis (2010)

6. Güting, R.H., Schneider, M.: Moving objects databases, 1st edn. Diane D. Cerra, San
Francisco (2005)

7. Hsueh, Y.-L., Zimmermann, R., Ku, W.-S.: Efficient Updates for Continuous Skyline
Computations. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS,
vol. 5181, pp. 419–433. Springer, Heidelberg (2008)

8. Library, S.I.,
http://www.research.att.com/~marioh/spatialindex/index.html

9. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Proceedings of the 32nd Intl.
Conf. on Very Large Data Bases, Seoul, Korea, pp. 751–762 (2006)

10. Sistla, A.P., et al.: Modeling and Querying Moving Objects. In: Proceedings of the 3rd
Intl. Conf. on Data Engineering, pp. 422–432 (1997)

11. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: Proceed-
ings of the 27th Intl. Conf. on Very Large Data Bases, pp. 301–310 (2001)

12. Tung, A.K.H.: Continuous Skyline Queries for Moving Objects. IEEE Trans. on Know-
ledge and Data Eng., 1645–1658 (2006)

13. Xiong, X., et al.: Scalable Spatio-temporal Continuous Query Processing for Location-
aware Services. In: Proceedings of the 16th Intl. Conf. on Scientific and Statistical Data-
base Management, p. 317 (2004)

14. Guo, X., et al.: Direction-based surrounder queries for mobile recommendations. The
VLDB Journal, 743–766 (2011)

